Entropy of Stabilizer States

Mary Beth Ruskai mbruskai@gmail.com

Tufts University and Institute for Quantum Computing, Waterloo

joint with Noah Linden, Fero Matúš, Andreas Winter

Hong Kong August, 2013

Classical Shannon Entropy

Def:
$$H(p) = -\sum_k p_k \log p_k$$
 Shannon (1948)

Properties of multi-party systems:

Pos
$$H(p) \geq 0$$

SSA
$$H(A) + H(B) - H(A \cap B) - H(A \cup B) \ge 0$$

Mono
$$A \subset B \Rightarrow H(A) \leq H(B)$$

$$H(A) \equiv H(p_A)$$
 etc.

 $\textit{A},\textit{B},\ldots$ subsets of some index set $\mathcal{X} \simeq [1,2,,\ldots \textit{N}]$

Quantum Entropy

Def: (1927) von Neuman Entropy of quantum state ho density matrix $ho \geq 0, \ {\rm Tr} \,
ho = 1$

$$S(\rho) = -\operatorname{Tr} \rho \log \rho = -\sum_{k} \lambda_{k} \log \lambda_{k}$$

Props: 1)
$$S(\rho) \ge 0$$
 2) $S(\rho)$ concave

3) SSA for multi-party systems $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B\otimes\mathcal{H}_C$

$$S(\rho_{ABC}) + S(\rho_B) \le S(\rho_{AC}) + S(\rho_{BC})$$

Quant marginals or reduced density matrix $\rho_A = \operatorname{Tr}_B \rho_{AB}$

That's all folks!

Conditional information

Cond Info $S(\rho_{AB}) - S(\rho_A)$ concave in ρ_{AB} Cond Info always ≥ 0 for classical systems

Can have quant um state
$$|\psi_{AB}\rangle=\frac{1}{\sqrt{2}}\big(|00\rangle+|11\rangle\big)\in\mathcal{H}_A\otimes\mathcal{H}_B$$

$$\rho_A=\operatorname{Tr}_B\rho_{AB}=\operatorname{Tr}_B|\psi_{AB}\rangle\langle\psi_{AB}|=\frac{1}{2}I_A\quad\text{max mixed}$$

$$\operatorname{Cond\ Info}=0-\log 2<0\qquad \rho_{AB}=|\psi_{AB}\rangle\langle\psi_{AB}|\ \text{pure}$$

Cond Info neg for highly entangled quantum states once thought "defect"; now has nice info theory interp. conditional info is amount of info need to learn AB knowing A when neg, measures entanglement available for future info trans M. Horodecki, Oppenheim and Winter (2005) state merging

Weak Monotonicity

$$ho_{AD} = |\psi_{AD}\rangle\langle\psi_{AD}| \;\; {
m pure} \Rightarrow \; S(
ho_A) = S(
ho_D)$$
 pure state is rank one projection op, $ho_{AD}^2 =
ho_{AD} \geq 0$

Purification: Given ho_{ABC} can find vector $|\psi_{ABCD}
angle$ s.t

$$\rho_{ABC} = \text{Tr}_D |\psi_{ABCD}\rangle \langle \psi_{ABCD}|$$

Apply to SSA
$$S(
ho_{AB}) + S(
ho_{BC}) - S(
ho_{ABC}) - S(
ho_B) \geq 0$$

Equiv. ineq:
$$S(\rho_{CD}) + S(\rho_{BC}) - S(\rho_D) - S(\rho_B) \ge 0$$

Weak monotonicity or "monogamy of entanglement"

Cond Info $S(\rho_{BC}) - S(\rho_B)$ and $S(\rho_{CD}) - S(\rho_D)$ can't both be neg Charlie can be entangled with Beverly or Dorothy, but not both

Purification and Complementarity

Spectral decomp of
$$\rho_A = \sum_k \lambda_k |\phi_k\rangle \langle \phi_k|$$

Let $\{\theta_k\}$ any O.N. basis for $\mathcal{H}_B \simeq \mathcal{H}_A$
Def $|\psi_{AB}\rangle = \sum_k \sqrt{\lambda_k} |\phi_k\rangle \otimes |\theta_k\rangle$ "purification"
 $\rho_B = \operatorname{Tr}_A |\psi_{AB}\rangle \langle \psi_{AB}| = \sum_k \lambda_k |\theta_k\rangle \langle \theta_k|$ same spectrum as ρ_A
vector $|\psi\rangle \in \mathcal{H}$ and rank one proj $|\psi\rangle \langle \psi|$ both called "pure" state identify class prob vector p_k with diag D.M. $\rho = \sum_k p_k |e_k\rangle \langle e_k|$ can also "purify" class prob dist $|\psi_{AB}\rangle = \sum_k p_k |e_k\otimes f_k\rangle$ quant state Start with arbitrary $\psi_{AB} = \sum_{jk} a_{jk} |e_j\otimes f_k\rangle$
Use Sing Val Decomp (aka "Schmidt") $\psi_{AB} = \sum_k \mu_k |\phi_k\rangle \otimes |\theta_k\rangle$ non-zero evals of both ρ_A and ρ_B are $\mu_k^2 \Rightarrow S(\rho_A) = S(\rho_B)$
Essentially AA^* and A^*A same non-zero e-vals

Properties of quantum entropy

Some sense: Only one inequality, SSA

 $S(\rho) \geq 0$ is really just normalization condition most purposes only need consistency, ${\rm Tr}_{AB}\, \rho_{AB} = {\rm Tr}_A\, \rho_A$

But we need it to so that entropy vectors form cone

Have seen Weak Monotonicity is equiv, to SSA in quantum setting

Even concavity not indep: clever choice of block matrix

sub add
$$S(\rho_{AB}) \leq S(\rho_B) + S(\rho_B)$$
 \Rightarrow concavity similarly SSA \Rightarrow Cond Info concave in ρ_{AB}

But these are not linear implications, so will need to add something

N-party Entropy Cones

N-party state ρ12...N consider all reduced states $\rho_1, \rho_2, \dots, \rho_{12}, \dots \rho_{37} \dots \rho_{234} \dots$ fix order and generate vector in \mathbf{R}^{2^N} from entropies $(S(\rho_1), S(\rho_2), \dots S(\rho_{12}), \dots S(\rho_{37}), \dots S(\rho_{234}), \dots,)$ closure of all such vectors is a convex cone – entropy cone classical entropy cone ⊊ quantum entropy cone would like to characterize these cones, esp. quantum cones Cone in \mathbb{R}^{2^N} generated by half-planes from various inequalities Shannon cone: Pos. SSA. Mono YZ: Shannon Ent Cone \supseteq Classical Ent Cone for N > 3

cones of entropy type vectors

$$A,B,\ldots$$
 subsets of some index set $\mathcal{X}\simeq [1,2,\ldots N]$ $J=\{A,C,D,\ldots\}$ set of substes $J^C=\{B\in\mathcal{X}:B\notin J\}$ $\overline{\Sigma}_N^C$ and $\overline{\Sigma}_N^Q$ closure of cone of N -party entropy vectors Γ_N^C polymatroid $H(p)\geq 0,\ H(AB)>H(A),\ SSA$ Γ_N^Q polyquantoid $S(\rho)\geq 0,\$ weak mono, SSA or $S(\rho)\geq 0,\ SSA$, and quant marginals of $(N+1)$ -party states $S(\rho_J)=S(\rho_{J^C})$ Λ_N^C and Λ_N^Q add linear rank ineq to Γ_N^C and Γ_N^Q

Can completely characterize $\Lambda_4^Q \equiv \Gamma_4^Q$ and Ingelton Ineq.

Don't know if $\overline{\Sigma}_{4}^{Q}$ satisfies non-Shannon inequalities

Defs

mutual information

$$I(A:B) \equiv S(A) + S(B) - S(AB)$$

conditional mutual information

$$I(A:B|C) \equiv S(AC) + S(BC) - S(C) - S(ABC)$$

Ingleton expression

$$ING(AB:CD) \equiv I(A:B|C) + I(A:B|D) + I(C:D) - I(A:B)$$

SSA equiv to $I(A:B|C) \ge 0$

Ingleton inequality $ING(AB : CD) \ge 0$

not universal - simplest "linear rank inequality"

Examples of "balanced" inequality – number of A, B, \ldots cancel out

Group rank inequalities

Thm: (Chan-Yeung) There is a 1-1 correspondence between entropy inequalities for classical *N*-party systems and inequalities for the sizes of subgroups of groups.

Ex: SSA equiv to
$$|G_1| \cdot |G_2| \le |G_1 \cap G_2| \cdot |G|$$

Pf Idea: Can find class prob dist with entropy of marginals $\log \frac{|G|}{|G_J|}$

Subgroups with special properties, e.g., normal or abelian, may satisfy additional inequalities

linear rank inequalities – sizes of subspaces of vector spaces

$$G_A$$
 and G_B normal \Rightarrow ING $(AB : CD) \ge 0$.

Ingleton is only linear rank inequality for 4-party systems

non-Shannon inequalities

Classical *N*-party entropy cone satisfies non-Shannon ineq.

- Yeung-Zhang (1997-98) gave first t=1
- Dougherty-Freiling, Zeger (2006+)
 found new inequalities by computer search
- Matúš (2007) found two infinite families $t \ge 0$ integer

$$t \operatorname{ING}(AB : CD) + I(A : B|D) + \frac{t(t+1)}{2} [I(B : D|C) + I(C : D|B)] \ge 0$$

ING(AB : CD)+ positive terms ≥ 0

 \Rightarrow 4-party entropy cone not polyhedral

suggests don't yet know all classical 4-party inequalities

Know: Classical entropy cone described by Mono and balanced ineq

Ingleton in Quantum Setting

Any of following conditions implies Ingelton inequality

- a) $\rho_{ABCD} = |\psi_{ABCD}\rangle\langle\psi_{ABCD}|$ is any pure 4-party state.
- b) $\rho_{ABCD} = \rho_{ABC} \otimes \rho_D$ or $\rho_A \otimes \rho_{BCD}$
- c) ρ_{ABCD} symmetric under partial exchange between (A,B) and (C,D), under any *one* (but not two) of the exchanges $A\leftrightarrow C$, $B\leftrightarrow D$, $A\leftrightarrow D$ or $B\leftrightarrow C$.

Ingleton Inequality not universal, but hard to find violations

N-party linear rank inequalities

Kinser (2011) found first infinite family

DFZ (2010) found tree algorithm for generating all families when pair of subsystems with "common information" have form $\sum + c_k$ (cond mutual info) $\geq I(A:B)$

In group set up, pair of normal subgroups \simeq "common info"

Will show \Rightarrow all stabilizer states satisfy such ineq.

BUT Chan, Grant, Kern (2011) showed ∃ linear rank ineq.
that are not multi-party Ingleton
suggests DFZ does not give all linear rank ineq.

don't know if stabilizer states would satisfy such ineq.

Common information

State ρ_{AB} of two subsystems A, B has common information if Can add another party ζ such that

$$H(A\zeta) = H(A), \quad H(B\zeta) = H(B) \text{ and } \qquad H(\zeta) = I(A:B)$$

corresponds to pair of normal subgroups in groups setting

BUT Chan, Grant, Kern (2010) showed ∃ other linear rank ineq

Main Result

Thm: Ingleton cone (Pos, SSA, WM, ING) for 4-party systems is precisely the closure of the convex hull of entropy vectors that arise from reduced states of 5-party pure stabilizer states.

Thm: Reduced states of (N + 1)-party stabilizer state satisfy every N-party linear rank inequality from common information (DFZ).

Thm: (Indep by Gross and Walter) Every balanced classical entropy inequality satisfied by reduced states of stabilizer states.

Weyl-Heisenberg group

Generalized shift and phase operators on C_d

$$X|e_k\rangle = |e_{k+1}\rangle$$
 $Z|e_k\rangle = \omega|e_k\rangle$ $\omega = e^{2\pi i/d}$

 $XZ = \omega ZX$ W group gen by $X^j Z^k$

Center $C = \{\omega^k \mathbb{1}\}_{k=0,1,\dots d-1}$ multiples of identity

 $\widehat{W} = W/C$ Abelian – rough prod X^jZ^k ignore phase

Consider unitary group on $\bigotimes_{x \in \mathcal{X}} \mathcal{H}_x$ of form $W = \bigotimes_{x \in \mathcal{X}} W_x$

Stabilizer G Abelian subgroup of W

simultaneous eigenspace is Quantum Error Correction Code Stabilizer state is simul eigenstate of max Abel subgroup G

Stabilizer states

 W_j subgroup of $\mathcal{U}(\mathcal{H}_j)$ with center C_j mult of I (e.g. Weyl-Heis)

$$\widehat{W}_j = W_j/\mathcal{C}_j$$
 Abelian with size $d_j^2 \quad d_j = \dim \mathcal{H}_j$.

Consider G max Abelian subgroup of $W = \bigotimes_j W_j$

Simultaneous e-vec of all $g \in G$ called a stabilizer state

Why are one-dim codes interesting? aka graph states,

Important role in one-way quantum computing cluster state

Arise in mutually unbiased bases

$$G_J = \{g = g_j g_k : g_k = I, k \in J^c\}$$
 think of $g = g_j \otimes I$

Key Thm.

Thm: (indep several group pprox 2004) $ho=|\psi\rangle\langle\psi|$ pure stab state

$$ho_J = {
m Tr}_{J^c} |\psi
angle \langle \psi| \ {
m proj} \ {
m of} \ {
m rank} \ rac{|\widehat{G}_J|}{d_J} \quad \Rightarrow \quad S(
ho_J) = \log rac{d_J}{|\widehat{G}_J|}$$

Cor: Since $|\widehat{G}| = d = d_J d_{J^c}$ last eq. can be rewritten as

$$S(\rho_J) = S(\rho_{J^c}) = \log \frac{|\widehat{G}|}{|\widehat{G_{J^c}}|} - \log d_J$$

 $\log \frac{|\widehat{G}|}{|\widehat{G_{J^c}}|}$ is a group entropy and

Additional terms cancel for any balanced inequality

Moreover stab group \widehat{G} Abelian \Rightarrow Ingleton holds

 \Rightarrow Matúš ineq. = Ingleton + pos terms hold

Classical Balanced Inequalities

More parties – common info assoc with normal subgroups

⇒ all DFZ type linear rnak inequalities hold

More \Rightarrow all balanced classical entropy ineq hold.

D. Gross and M. Walter (arxiv:1302.6902)

independently by different methods

Use phase space methods to find classical prob dist X

- s.t. stabilizer states satisfy $S(\rho_J) = H(X_J) |J|$
- \Rightarrow all balanced classical ineq. hold

Sketch Proof: part I

 $P=|\psi
angle\langle\psi|$ proj on simul e-state of G max Abel subgroup $gP=\chi(g)|\psi
angle\langle\psi|=\chi(g)P$ $\chi(g)$ character of 1-dim rep.

$$P = |\psi\rangle\langle\psi| = \frac{1}{|G|} \sum_{g \in G} \overline{\chi(g)} g = \frac{1}{|G_0|} \sum_{g \in G_0} g$$

 $G_0 \simeq G/C$ identify subgp $G_0 \subset G$ with quotient group

$$P^{2} = \frac{1}{|G_{0}|^{2}} \sum_{g} \sum_{h} gh = \frac{1}{|G_{0}|} \sum_{g} g = P$$

Aside: trivial rep not essential $P_j = |\psi_j\rangle\langle\psi_j| \equiv \frac{1}{|G_0|} \sum_g \overline{\chi}_j(g) g$ $\text{Tr}\, P_i P_k - |\langle\psi_i,\psi_k\rangle|^2 = \delta_{ik}$ O.N. basis of e-states

Sketch Proof: part II:

Suffices to consider bipartite setting

$$ho_{AB} = |\psi_{AB}
angle \langle \psi_{AB}| = rac{1}{|\widehat{G}|} \sum_{g_{m{s}} \otimes g_{m{s}} \in G} g_{m{s}} g_{m{s}}$$

 $\operatorname{Tr} g_B = 0$ unless $g_B = 1$

$$\rho_A = \frac{1}{d_A d_B} \sum_{g_A \otimes \mathbb{1}_B} g_A d_B = \frac{|\widehat{G}_A|}{d_A} \left(\frac{1}{|\widehat{G}_A|} \sum_{g_A \in \widehat{G}_A} g_A \right)$$

$$\Rightarrow \rho_A \;\; \mathsf{proj} \; \mathsf{of} \; \mathsf{rank} \; \frac{|\widehat{G_A}|}{d_A} \; \Rightarrow \; S\big(\rho_A\big) = \log \frac{d_A}{|\widehat{G_A}|}$$

subtle point $|\widehat{G}|=d=d_Ad_B$ but $|\widehat{G_A}|
eq d_A$

4-party "Ingleton" cone – other direction

Can explicitly compute extreme rays of 4-party Ingleton cone

Show each ray can be realized using a 5-party pure stabilizer state

All but one in (2006) thesis of Ben Ibinson

DFZ methods give all 5-party linear rank inequalities

Conjecture also achieved with 6-party pure stabilizer states

Conj: All DFZ inequalities achieved with pure stabilizer states

How to violate Ingleton

$$\frac{1}{4}|1000\rangle\langle1000| + \frac{1}{4}|0111\rangle\langle0111| + \frac{1}{4}|0010\rangle\langle0010| + \frac{1}{4}|0001\rangle\langle0001|$$

$$\mathrm{ING}(AB:CD) = 0 + 0 + 0 - I(A:B) \leq 0$$

"quantumize" $|\psi
angle=rac{1}{\sqrt{2}}ig(|1000
angle+|0111
angleig)$

$$\rho_{ABCD} = \frac{1}{2} |\psi\rangle\langle\psi| + \frac{1}{4} |0010\rangle\langle0010| + \frac{1}{4} |0001\rangle\langle0001|$$

same reduced states as classical

Challenge: Find truly quantum state that violates Ingleton

Open questions

- All entropy vectors which violate Ingleton in classical cone??
- Do new classical entropy ineq extend to quantum systems?
- What inequalities characterize quantum entropy cone?
- Do stabilizer states satisfy linear rank inequalities that do not arise from common info ?
 - Find an explicit example of such an inequality.
 - Do all classical inequalities have form linear rank ineq + pos terms ≥ 0?
- How much of a restriction are new inequalities, i.e., relative size of true entropy cone and Shannon or vonNeuman cone